SeptemberOS

Embedded RTOS

Functional Specification

Version 1.0
Daniel Drubin
11/5/2010
Table of Contents

iiTable of Contents

Revision History
ii
1.
Introduction
1
1.1
Purpose
1
1.2
Document Conventions
1
1.3
Intended Audience and Reading Suggestions
1
1.4
Project Scope
1
1.5
References
2
2.
Overall Description
3
2.1
Product Perspective
3
2.2
Product Features
4
2.3
User Classes and Characteristics
5
2.4
Operating Environment
5
2.5
Design and Implementation Constraints
5
2.6
User Documentation
5
2.7
Assumptions and Dependencies
6
3.
System Features
7
3.1
Device Manager
7
3.2
Memory Manager
9
3.3
Task Manager
10
3.4
Timers
16
3.5
Basic Services
18
3.6
Networking Support Library
19
3.7
File Systems Support Interface
26
3.8
Standard C Support Library
29
3.9
POSIX Support Library
30
3.10
Architecture Support Library
31
4.
External Interface Requirements
33
4.1
User Interfaces
33
4.2
Hardware Interfaces
33
4.3
Software Interfaces
33
4.4
Communications Interfaces
33
5.
Other Nonfunctional Requirements
34
5.1
Performance Requirements
34
5.2
Safety Requirements
34
5.3
Security Requirements
34
5.4
Software Quality Attributes
34
6.
Other Requirements
35
Appendix A: Glossary
35
Appendix B: Issues List
35

Revision History

	Name
	Date
	Reason For Changes
	Version

	Daniel Drubin
	11/10/2010
	Initial version
	1.0

	
	
	
	

1. Introduction

1.1 Purpose

This functional specification defines SeptemberOS Embedded RTOS version 1.0. Specified functionality is intended for application writers and users of the product of any level. It specifies interfaces for application code, system code, drivers and integrated components at level sufficient to use the RTOS as is and freely modify its core code and supply components in order to suit projects' needs.
1.2 Document Conventions

The document is written in Arial, 11 normal font. NOTES are provided in the same font and prepended by the word "NOTE" in all-capital. Specific functions, structures and variables names that appear exactly as in code are given in italic.
1.3 Intended Audience and Reading Suggestions

This document is intended for users of SeptemberOS who will use it in embedded projects, distributors of the RTOS, development, support and technical writing personnel.

Native users of SeptemerOS are embedded programmers, who are proficient in C programming language and embedded systems.

This specification doesn't (on most occasions) explain concepts and details of RTOS and embedded systems. It is assumed that the reader is familiar with these concepts and with C programming language.

1.4 Project Scope

The specified SeptemberOS version 1.0 is a self-contained product. It is intended to be used in embedded projects as core OS with task management, system resources management, complete hardware interfacing support and common OS support libraries (for networking, file systems access and software standards compatibility).
SeptemberOS aims at standards compatibility for easy porting and application of existing knowledge, while maintaining small footprint for embedded systems, execution speed and real-time performance. Whenever the two concepts conflict, SeptemberOS as a rule does not try to resolve it, but attempts to provide both options for the user to choose, according to every project's needs.
SeptemberOS is intended to take place of an embedded OS in many projects which would use embedded Linux today, but for which Linux'es performance is not satisfactory. Complete buildable source code is provided. The OS is built with aim to provide necessary common OS services to embedded projects and with concern in mind that embedded systems may need to tune, replace or remove OS components.
1.5 References

This specification makes references to the following standards and specifications:

[1] The core of the Single UNIX Specification. IEEE Std 1003.1,2004 Edition (POSIX-1.2001). http://www.unix.org/version3/ieee_std.html
[2] The ISO C Language Standard. Programming Languages – C (ISO/IEC 9899:1999). http://www.open-std.org/JTC1/SC22/WG14/www/standards
[3] OSI Networking Model. Information Technology – Open System Interconnection (ISO/IEC 7498-1). http://standards.iso.org/ittf/PubliclyAvailableStandards/s020269_ISO_IEC_7498-1_1994(E).zip
2. Overall Description

2.1 Product Perspective

SeptemberOS embedded RTOS version 1.0 specified in this document is a new, self-contained product.
The OS provides components that may be used as building blocks for embedded application project and may be tuned or replaced individually. The following picture describes the idea.
[image: image1.jpg]

[image: image2.jpg]

[image: image3.jpg]

[image: image4.jpg]

[image: image5.jpg]

[image: image6.jpg]

[image: image7.jpg]

[image: image8.jpg]

Picture 1
SeptemberOS Building Blocks
SeptemberOS is provided with a number of sample applications and device drivers. While they are not considered to be part of OS, they provide useful functionality and may be used as is or serve as basis for user's own drivers and applications. Drivers are part of implementation for specific platform, they are intended more to be used "as is", as there are OS components that depend on them. Sample applications are more intended to be used as basis, but may be also used as additional tasks or as is in user's designs (there are sample applications that implement command monitor, telnet server, HTTP server etc.)
2.2 Product Features

SeptemberOS is a real-time operating system which follows general design lines of dedicated embedded OS. Application is built with OS into a single binary, nothing else is needed to start. There us a single address space, multi-threaded tasking structure; no requirement for a filesystem to boot; no requirement for user intervention for boot and operation.

Following the line of a dedicated embedded OS design, SeptemberOS offers a number of advantages over the most popular embedded Linux on the same platform: smaller footprint, better responsiveness, better performance, portability to 16-bit and 8-bit CPU/MCU. At the same time it offers a number of advantages over established embedded OS including performance, modularity, standard interfaces and provision of complete buildable source code.

SeptemberOS is developed with the philosophy in mind that an embedded OS is a support library for the application's developer. It provides hardware interfaces (chip, board support, device drivers), task and memory management, task scheduling and synchronization. At the same time it is recognized that embedded developers must have fine control over OS; therefore SeptemberOS provides with complete source code and in modular form. It is easy and straight-forward to replace task management or memory management algorithms with custom ones, or to leave out e.g. task management at all for one-loop applications.

SeptemberOS doesn't use MMU features of CPUs, and is portable to MMU-less CPUs. It is written in C language, except for small chip-specific assembly parts (bootstrapping, IRQ handlers entry points and task switching) and source code is supposed to be easily understandable by a professional embedded developer.
Below a short features list is provided.
· Dedicated embedded OS design lines

· Task management - preemptive RT, option to round-robin on the same level

· POSIX APIs: pthreads, exec() and friends, I/O (files, devices, stdio

· streams)

· Filesystems: ext2, FAT. Generic FS API

· Standard C library (w/o math functions)

· Networking - TCP/IP stack. Protocols: IP, TCP, UDP, ARP (as necessary), ICMP (minimal), DHCP (client)

· Networking - sockets library

· Timers

· Modular design - built from mostly independent modules.
· Complete buildable source code provided

2.3 User Classes and Characteristics

SeptemberOS users are embedded developers who build embedded projects and need common OS services, small footprint, performance and real-time properties. Users may be individuals or companies or corporations of any kind.
Use of SeptemberOS requires proficiency in C programming language and common standard APIs (standard C library, POSIX I/O, sockets API etc.). Expert use of SeptemberOS, including writing drivers, ports to different machines and replacement or changing of OS core components requires also thorough knowledge of hardware architectures, embedded software and RTOS concepts.
2.4 Operating Environment

SeptemberOS is a core system software part that runs starting on "bare metal" and up. It runs on a hardware platform, provided typically by a MMU-less CPU/MCU (or CPU with unused MMU) and reference evaluation board or user's custom designed board. The hardware platform must provide programmable timers, interrupt controller and the CPU must provide at least one atomic read-modify-write instruction.
2.5 Design and Implementation Constraints

Design and implementation of SeptemberOS are limited mainly by its intended use:

· memory and storage footprint as small as possible
· task switching time and interrupt entry overhead reduced as much as possible
· only code with predictable behavior in ISR
· all modules and components are replaceable or changeable by the user
· core components are written in C and provide C linkage and interface. Programming languages must be able to interface to C
· no mandatory need for filesystems and user interaction (typical use: the software starts when system boots up and ends when the system is halted or rebooted)
· common and standard APIs are used in order to lower learning curve and let users apply common industry knowledge

· current implementation uses GNU build tools. This may be changed, but build system must have C compiler and assembler for desired target architecture

2.6 User Documentation

SeptemberOS is provided with the following documentation and support materials:

· This Functional Specification

· SeptemberOS product datasheet

· Release Notes

· Sample applications

2.7 Assumptions and Dependencies

N/A
3. System Features

This chapter and its sub-clauses specify integral SeptemberOS components. Some components are independent, and some depend on other components. Most of them may be replaced by user-supplied compatible components; such replacements shall expose interfaces specify in this chapter in order to allow correct operation of other components.

For the purpose of replacement it is necessary to keep in mind dependencies of modules on each other. In functional specification for each module it is also stated on which other modules it depends. (NOTE: for the purpose of this specification if a module uses only trivial memory-bound functions, such as memcpy(), it is not considered to be functionally dependent on Standard C Support Library).
Bus drivers, device drivers and sample applications are not considered to be OS components and are not described in this functional specification.
3.1 Device Manager
3.1.1 Description and Priority

Device manager provides common initialization, deactivation and API for SeptemberOS device drivers.

Device drivers are defined as hardware interface support libraries which expose programming API to an application via standard access functions, special entry points for OS and interface to hardware in way of accessing programming hardware resources and accepting interrupts via installed interrupt handlers.
It should be noticed that there is no requirement that device interface is written necessarily in a form of SeptemberOS device driver. SeptemberOS application runs in kernel mode and has the same privileges as OS components; all OS services are available to applications. It is possible to implement complete device interface including interrupt handling in application code.
Not all drivers fit within device manager’s model. For example, disk drivers and NIC drivers expose a completely different specific API and may choose not to implement device manager’s handlers.

3.1.2 Stimulus/Response Sequences

Device manager entry points are called under the following circumstances:

· Driver is initialized

· Driver is deinitialized

· Driver is opened by application

· Driver is closed by application

· Driver API is requested by one of the standard calls: read, write and ioctl
3.1.3 Functional Requirements

DEV-1:

Device manager addresses devices by device id and sub-device id. Both IDs take 16 bits and are combined into 32-bit value that designates device. Device and sub-device IDs are analogous to UNIX major and minor device numbers and serve the same purpose.
DEV-2:

Device manager maintains static drivers configuration table. The table is defined in file config.h under special conditional compilation switch, which is defined by device manager source.

Configuration table defines device drivers loading order and entry points: init, deinit, read, write, ioctl, open and close. Below are specified prototypes of those entry points:
typedef int (*drv_init)(unsigned long id);

typedef int (*drv_deinit)(void);

typedef int (*drv_open)(unsigned sub_id);

typedef int (*drv_read)(unsigned sub_id, void *buffer, unsigned long length);

typedef int (*drv_write)(unsigned sub_id, const void *buffer, unsigned long length);
typedef int (*drv_ioctl)(unsigned sub_id, int cmd, va_list argp);

typedef int (*drv_close)(unsigned sub_id);

drv_init takes device ID as a parameter. All other functions take only sub-device ID as a parameter.
All functions return negative value for error indication. drv_init, drv_open, drv_close and drv_deinit return 0 upon success; drv_read and drv_write are suggested to return number of bytes issued for read or write, respectively upon success; drv_ioctl may return any interface-specific non-negative value upon success.
It is recommended that additionally to returning negative number as error indication device drivers also set errno global variable to specific error code.
DEV-3:

Device manager exposes initialization entry point to OS core:

void init_devman(void);
The initialization routine calls all drivers’ drv_init entry points in order in which drivers appear in configuration table. It is called by SeptemberOS initialization code during system start-up.
Driver’s drv_init handler is supposed to initialize the device and bring it to operational state.
void deinit_devman(void);
The de-initialization routine calls all drivers’ drv_deinit entry points in order in which drivers appear in configuration table. It is called by SeptemberOS shutdown initialization code during system bring-down.

Driver’s drv_deinit handler is supposed to de-initialize (or shutdown) the device and bring it to a state safe for power off or reset.
Device manager provides the following API functions that call respective driver’s handlers and return value that the driver’s handler returned.
int open_drv(unsigned long id);
int read_drv(unsigned long drv_id, void *buffer, unsigned long length);

int write_drv(unsigned long drv_id, const void *buffer, unsigned long length);

int ioctl_drv(unsigned long drv_id, int cmd, …);

int close_drv(unsigned long drv_id);

All API functions take combined device and sub-device ID (high 16 bits contain device ID and low 16 bits contain sub-device ID). The functions use device ID to index select driver from configuration table and call its entry point with sub-device ID as a parameter. Return value from those functions is value returned by the drivers, with the following exceptions. If a call was made referencing a non-existent driver, -1 is returned and errno is set to ENODEV. If and cases where the driver didn’t expose respective entry point (set NULL in appropriate entry in driver entry), -1 is returned and errno is set to EINVAL.
Drivers entry points are defined for convenience, but they are not mandatory. If a driver doesn’t need to do any per sub-device initialization during open, the application may skip calls to open_drv() and close_drv() and instantly call read_drv(), write_drv() or ioctl_drv().
TBD
The current specification doesn’t connect device manager to POSIX support library’s I/O structures. Thus device manager is not dependent on inclusion of POSIX support library, but device drivers lack ability to report read and write events to tasks via select() events multiplexer.
3.2 Memory Manager

3.2.1 Description and Priority

SeptemberOS memory manager implements standard C library functions: malloc(), calloc(), free() and realloc().
Please refer to the ISO C Standard (9899:1999) for specification of the functions, their parameters and semantics.

All dynamic memory allocation in SeptemberOS is done with memory manager’s functions. OS components that use memory manager are: task manager, timers, network support library, file systems support library, standard C support library and POSIX support library.
3.2.2 Stimulus/Response Sequences

Memory manager functions are called by OS and application code when allocation or freeing of dynamic memory is needed.

3.2.3 Functional Requirements

MEM-1:
Dynamic memory start address and size are defined in config.h (in architecture-dependent header) by constants DYN_MEM_START and DYN_MEM_SIZE.

MEM-2:

Allocation routines shall satisfy alignment requirements of all its users. The most demanding requirement is specified in config.h (in architecture-dependent header) by constant BLOCK_ALIGN.
3.3 Task Manager

3.3.1 Description and Priority

SeptemberOS task manager implements real-time task scheduler and task management services: task creation, suspension, waking, synchronization, event signalling.

Task manager consists of two parts:

· Generic part, which provides all services common functionality for all platforms

· Architecture-specific part, which provides low-level implementation of task switching (task state saving and restoring), atomic lock variable acquisition and release etc.

Task manager uses Memory Manager’s, Timers and OS Basic services.
3.3.2 Stimulus/Response Sequences

Task manager operates in response to calls to its services (creation and termination of a task or scheduling / synchronization).

3.3.3 Functional Requirements

TSK-1:
SeptemberOS task manager operates on tasks via TASK_Q (task queue) structure. The structure contains task state and queue linking fields.

Task queues need not any special handing by the client code, except for initialization of an empty queue to NULL for the first time.

Task queues are priority queues: entries are sorted by tasks priorities. This doesn’t have specific meaning for runnable tasks (for which there is a separate queue for each priority level), and is intended for waiting queues that may contain tasks with different priorities.
TSK-2:

Task manager provides the following API functions for task creation:
int start_task(TASK_ENTRY task_entry, unsigned priority, unsigned options, void *param);

int start_task_ex(TASK_ENTRY task_entry, unsigned priority, unsigned options, uintptr_t stack_base, uintptr_t stack_size,TASK_Q **ptask, void *param);

Both functions return 0 upon success and -1 for error.

The second variant accepts stack base address and size for the new task, which should have been allocated by the caller. Besides, it returns pointer to the newly created task into output parameter ptask.

TASK_ENTRY is an entry point to a task, defined as below:

typedef void (*TASK_ENTRY)(void *param);

Maximum number of concurrently existing tasks is limited by a definition of MAX_TASKS in config.h

Start task functions may be called in any contexts. (Side note: it is not advisable to start high-priority tasks in interrupt handlers in order to perform interrupt bottom-half work. It is recommended that special high-priority tasks are created during system initialization, which will constantly wait for events from real interrupt handler).
TSK-3:

Task manager provides the following API functions to terminate a task:
void terminate(void);

void end_task(TASK_Q *pq);

terminate() ends the currently running task, while end_task() ends any arbitrary task. end_task() doesn’t return an error, and has no effect if pq is not an existing task.

Return from task’s entry function has the same effect as calling terminate()

terminate() shall be called only from within running task context. end_task() may be called from any context.
TSK-4:

SeptemberOS task manager implements real-time task scheduling. There is a configurable number of priorities defined in config.h: NUM_PRIORITY_LEVELS.
The task scheduler maintains a priority queue for runnable tasks on every priority level. The first task in the highest priority level’s queue will run.

Optionally, tasks on the same priority level may allow round-robin preemption among them. If a task has an option OPT_TIMESHARE set, then it will release CPU after running TICKS_PER_SLICE timer ticks and move to the end of its priority queue. The task will remain runnable and will not allow lower priority tasks to run.
Task priorities are set at creation time and may be later changed by the following API functions:

void set_task_priority(TASK_Q *task, unsigned priority);

void set_running_task_priority(unsigned priority);
The first function sets priority for any task, and the second function sets priority of the currently running task.
set_running_task_priority() shall be called only within running task context. set_task_priority() may be called from any context.
TSK-5:

Tasks may have options that affect their scheduling and state management.
OPT_TIMESHARE option if set, allows time-sharing with the tasks on the same priority level.

OPT_FP option instructs task manager to save and restore FPU state when a task is switched to or from.

Task options are set at creation time and may be later changed by the following API functions:
void set_task_options(TASK_Q *task, unsigned options);
void set_running_task_options(unsigned options);
The first function sets options for any task, and the second function sets options of the currently running task.

set_running_task_options() shall be called only within running task context. set_task_options() may be called from any context.
TSK-6:

Task manager provides the following API functions to manipulate task queues:

void enqueue_task(TASK_Q **queue, TASK_Q *task);

TASK_Q *dequeue_task(TASK_Q **queue);
enqueue_task() inserts a task into priority queue. It is inserted after all tasks with higher or equal priority and before the first task with lower priority. If queue was empty (NULL), then task becomes queue head.
dequeue_task() removes the highest priority task from a queue. The removed task structure is returned. If the task was the only one in a queue, the queue becomes empty (NULL).

Removing a task from scheduler’s running queue has effect of making it not runnable. Inserting a task into scheduler’s running queue has effect of making it runnable.

NOTE: those functions don’t perform actual task switch.
enqueue_task() and dequeue_task() may be called in any context. It is not advisable to use those API functions anywhere except for task management code; applications and driver code should use other task management API functions.
TSK-7:

Task manager provides the following API functions to suspend task and resume it:
void nap(struct task_q **waitq);

void wake(struct task_q **waking);

nap() makes running task “take a nap” (suspend). It receives a pointer to the head of waiting queue on which the task will wait.
wake() wakes (makes runnable) the first task (with the highest priority) of the waiting queue.
nap() shall be used only from within a running task context. wake() may be used from any context.
TSK-8:

Task manager provides synchronization means: counting semaphores, mutexes and spinlocks.

Semaphores, mutexes and spinlocks primitives are based on architecture-specific atomic read-modify-write operations to set a lock variable to “locked” state and retrieve its status in the same operation.

Semaphores and mutexes are implemented with waiting queues. If a calling task tries to acquire a busy semaphore or mutex, it will be put to wait. When the resources is released, the highest priority task from the waiting queue will wake up and take the resource.

Semaphores and mutexes protection shall never be applied outside of running task context (e.g. in interrupt handlers). Spinlocks may be used in any context.
Semaphores are implemented within the following API functions:

void init_semaphore(SEMAPHORE *sema4, int max_count, int init_count);

void down(SEMAPHORE *sema4);

void up(SEMAPHORE *sema4);

init_semaphore() initializes semaphore to maximum count and initial count. down() tries to acquire a semaphore, up() releases it.

Mutexes are implemented within the following API functions:

void init_mutex(MUTEX *mutex);

void lock_mutex(MUTEX *mutex);

void unlock_mutex(MUTEX *mutex);

init_mutex() initializes a mutex. lock_mutex() tries to acquire a semaphore, unlock_mutex() releases it. Mutexes are semantically equivalent to semaphores with max_count 1.
Spinlocks are implemented with simple integer variables of type unsigned.
The following API functions are used to acquire and release a spinlock, respectively.

void spin_lock(unsigned *lock_word);

void spin_unlock(unsigned *lock_word);

lock_word is an address of lock variable.
In many cases spinlocks may be used for mutual protection with higher-priority code (e.g. interrupt handler). The following convenience functions are available that acquire spinlock and mask a specific IRQ:
void spin_lock_irq(unsigned *lock_word, int irq, uint32_t *irq_mask);

void spin_unlock_irq(unsigned *lock_word, const uint32_t *irq_mask);

irq_mask is a pointer to IRQ mask bit array (size is platform-specific), which is saved by spin_lock_irq() and restored by spin_unlock_irq(). irq is interrupt number to mask.
Additionally there are two API functions to globally enable and disable task preemption:

void disable_preemption(void);

void enable_preemption(void);
Additionally, tasks may use disable_irqs(), enable_irqs() and other interrupts manipulation functions, which were related to Basic Services and Architecture Support Library.

TSK-9:

Task manager provides the following events waiting services:

a) Simple events management.
The following API functions allow a task initialize multiple events set, wait for events and retrieve specific events that were reported.
void
init_events_mul(EVENTS_MUL *ev);

void
wait_events_mul(EVENTS_MUL *ev);

The structure EVENTS_MUL has the following definition:
typedef struct
events_mul

{

unsigned long
events_mask;

// Events of interest

unsigned long
current_events;
// Current events (reported)
struct task_q
*wait_queue;

} EVENTS_MUL;
Prior to calling wait_events_mul() a task should set events_mask to desired events set. wait_queue is used to put a task to wait if one of selected events is not available at a time of call to wait_events_mul().
In order to post events to EVENTS_MUL structure, the following API call is used:
void
send_events_mul(EVENTS_MUL *ev, unsigned long events);
Using the API above a task may wait for up to 32 events simultaneously.
There is no distinct API for waiting for a single event. In a case of a single event the above API may be used, or if it is known that event didn’t occur at the time of interest, the waiting task may just call nap() and delivering code will wake it up using wake().
wait_events_mul() shall not be called outside of running task context. send_events_mul() may be called in any context.
b) Select multiplexer events
Task manager provides events multiplexer (intended for use by select() API function). The API is based on the following structure:
typedef
struct
events_sel_q

{

int
max_events;

// Size of events arrays in bits

unsigned long
*pevents;

// Current events (usually there will be only one event posted)

unsigned long
*events_mask;

// Events of interest

struct task_q
*task;

// This is actually a single task that waits on events selector queue

struct
events_sel_q
*next, *prev;

} EVENTS_SEL_Q;
In EVENTS_SEL_Q structure task task queue is used to hold only a single waiting task. EVENTS_SEL_Q queue itself is sorted by task’s priority. events_mask is an array of unsigned integers that is set to desired events to watch. pevents is an array of unsigned integers that hold occurred events when a task waits.

The following functions provide API for events multiplexer.

void
init_events_sel(EVENTS_SEL_Q *sel_q, unsigned long *pevents);
Initializes EVENTS_SEL_Q.
EVENTS_SEL_Q *new_events_sel(int max_events, unsigned long *events_mask);

Allocates a new EVENTS_SEL_Q and sets its max_events and events_mask (the array is allocated, so the function may be called with automatic storage array as a parameter).
void
del_events_sel(EVENTS_SEL_Q *sel);
Frees and disbands EVENTS_SEL_Q.
void
remove_events_sel(EVENTS_SEL_Q **sel_q, EVENTS_SEL_Q *p);

Removes p from the queue sel_q.
void
wait_events_sel(EVENTS_SEL_Q **sel_q, EVENTS_SEL_Q *myself);
If myself already contains reported events, return immediately. Otherwise, puts the running task to sleep in task queue inside myself events queue and inserts myself into events queue sel_q.
void
send_event_sel(EVENTS_SEL_Q **sel_q, int max_events, int event);

Sends event to events queue.

The following functions are convenience API to set, clear and retrieve a specific event in an array of events.

void
set_event(unsigned long *pevents, int max_events, int event);

void
clear_event(unsigned long *pevents, int max_events, int event);

int
is_event_set(unsigned long *pevents, int max_events, int event);
3.4 Timers

3.4.1 Description and Priority

SeptemberOS provides with Timers API, which allows installation and removal of one-shot or periodic timers.

Timers service depends on architecture or machine specific hardware timers, which are set up by Architecture Support Library’s initialization code. Also it depends on Memory Manager services and OS Basic Services.
Installed timers run in timer interrupt handler’s context; they have very small latency, but have restrictions natural to ISR code.

Timers code should be considered as usual ISR code; in case that it needs to do some prolonged work the work should be placed in a high-priority task, which will receive wake-ups from the timer routine.

3.4.2 Stimulus/Response Sequences

Timers services are called by application and OS system code via API functions. Timers invokation code runs in response to system timer interrupt.
3.4.3 Functional Requirements

TMR-1:

Timers service installs a handler for system timer interrupts and manages timers in multiples of system timer ticks. System timer tick is configured in config.h by TICKS_PER_SEC definition.

TMR-2:

Timers are installed with the following API function:

int
install_timer(timer_t *tm);
timer_t is defined as follows:

typedef
struct timer

{

long
timeout;

// Number of timer's ticks (this timer's ticks, see 'resolution').

unsigned long
latch;

// Actual tick count.

unsigned long
resolution;

// Timer's ticks per second. Cannot be more than system timer's resolution (TICKS_PER_SEC).

unsigned
flags;

// Periodic or one-shot

unsigned task_priority;

// Task priority of a timer (tasks with greater priority will block this timer. Set to 0. - UNUSED
// in order to not allow any tasks mask out the timer's reporting

timer_proc
callback;

// Callback (timer) function

void
*prm;

// Parameter that will be transferred to callback

}
timer_t;
Timer routine has the following prototype:

typedef
void
(*timer_proc)(void *arg);
It is called with the same parameter that was transferred in prm field of timer_t structure when installing the timer.
resolution parameter is intended for systems with multiple timers, where different software timers may be installed on different hardware timers. Currently this parameter has no real use and should be set to TICKS_PER_SEC. The timer routine will be called after number of ticks computable by the following formula: timeout * TICKS_PER_SEC / resolution.
TMR-3:

A timer may be cancelled by calling to remove_timer(). This API function has the following prototype:

int
remove_timer(timer_t *tm);

One-shot timers are removed automatically by the system after calling the timer handler.
Timers may be installed and removed in any context, including timer routine.

3.5 Basic Services

3.5.1 Description and Priority

This chapter specifies a small group of system core services, which don’t clearly belong to any OS component. They may be used by both system and application code.
3.5.2 Stimulus/Response Sequences

Basic services include system initialization code, which is run during system start-up. Other API functions are called by client code (application or system).
3.5.3 Functional Requirements

BAS-1:

OS basics provide system initialization code. System initialization code calls initialization routines of all components in the following order:

· Platform-specific (architecture and machine)
· Memory manager

· Timers

· Task manager

· Devices manager

· System time

· POSIX I/O subsystem

· Sockets

· TCP/IP

· Standard C library

After initializations are completed, the application’s entry point, app_entry() is called. It has the following prototype:
void
app_entry(void);
Depending on whether START_APP_IN_TASK is defined in config.h, app_entry() is started in a context of initial task or as just a function out of any task context. The first case is suitable for easier start-up of an application, the second is suitable to prepare one-loop applications, possibly without task manager at all.
If app_entry() is started in a task, it has priority INIT_TASK_PRIORITY and options INIT_TASK_OPTIONS (both are defined in config.h)
BAS-2:
OS basics provide an API call to set interrupt handler:
int
set_int_callback(uint32_t irq_no, isr proc);
ISR has the following protptype:

typedef
int (*isr)(void);
OS basics allow up to MAX_IRQ_HANDLERS (defined in config.h) to be installed for a single IRQ number. ISR shall return 0 in order to allow other (shared) interrupt handlers to process IRQ.
ISR handlers run with the corresponding interrupt in “in service” state in interrupt controller and normally with interrupts disabled.

TBD
it may be convenient to expand the interface so that ISRs are supplied with void* parameter set at their installation time. This is generally intended to be pointer to device structure.
3.6 Networking Support Library

3.6.1 Description and Priority

SeptemberOS provides Networking Support Library. The current specification includes glue to ethernet devices. The following sub-components comprise Networking Support Library:
· Ethernet NIC (OSI network layer 1 and 2)

· Ethernet generic parser and submitter layer (layer 2)

· ARP (layer 3)

· IP, ICMP (layer 3)

· UDP, TCP (layer 4)

· DHCP

· Sockets API implementation

3.6.2 Stimulus/Response Sequences

Networking library code is invoked by applications via API function calls and by NIC receive interrupts via calling received packets parsing callbacks.

3.6.3 Functional Requirements

NET-1:

Ethernet NIC implements the following API functions:
void
(*get_send_packet)(unsigned char **payload);
int
(*send_packet)(unsigned char *dest_addr, word protocol, unsigned size);
get_send_packet() returns pointer to ethernet packet’s data area in payload. send_packet() sends a packet with payload contained in a buffer previously acquired by get_send_packet(). send_packet() takes destination ethernel address, protocol and size as parameters.
send_packet() must be always called after a call to get_send_packet() and before another call to get_send_packet(). However, NIC driver functions need to provide locking in order to ensure correct sequence of calls. Generic ethernet module provides this locking functionality (please see NET-3).
NET-2:

Ethernet NIC is responsible to call eth_parse_packet() in a context suitable for complete protocol parsing and possible data copying. The function has the following prototype:
void
eth_parse_packet(struct net_if *this, void *pkt);
In general, all parsing functions receive pointer to network interface that received the packet and pointer to headers of this protocol, provided by lower-level protocol parsers.

NET-3:

Generic ethernet module provides the following functionality.

On parsing way ethernet module defines eth_parse_packet() function, which is called by ethernet NIC driver.
void
eth_parse_packet(struct net_if *this, void *pkt);
On sending way it provides eth_get_send_packet() and eth_send_packet() functions. Their prototypes appear below:

void eth_get_send_packet(struct net_if *this, unsigned char **payload);
int
eth_send_packet(struct net_if *this, unsigned char *dest_addr, word protocol, unsigned size);

Their prototypes are the same as NIC driver’s get_send_packet() and send_packet() functions, with addition of network interface pointer (from which correct driver is determined and called). Generic ethernet module’s counterpart eth_get_send_packet() and eth_send_packet() provide locking of the corresponding netowork interface in order to prevent another call to get_send_packet() before send_packet() corresponding to previous get_send_packet() was called. eth_get_send_packet() locks acquisition of send frames on the desired network interface and eth_send_packet() unlocks it.
In case that eth_get_send_packet() is called referencing locked network interface, payload is set to NULL on return. eth_send_packet() returns 0 if sending was successful and -1 if sending was attempted on a non-locked network interface.
NET-4:

Network Support Library provides with ARP functionality in order to resolve IP addresses to hardware Ethernet addresses for sending packets and let other ethernet hosts know hardware addresses of configured network interfaces.
The ARP module provides the following interface for client code:

struct
arp_tbl_entry
*find_arp_entry(unsigned char *ip_addr);
This function finds ARP entry that correlates Ethernet address to requested IP address. The client code may use this function to determine whether an IP protocol-level packet may be sent without delay (returned is not NULL), or it will have to invoke arp_discover() in order to discover destination Ethernet address (NULL is returned).
int
arp_discover(char *addr);
This function discovers Ethernet address that corresponds to requested IP address. It returns Boolean success indicator, 1 meaning that IP address was successfully resolved to Ethernet address and 0 means that no host resolved the IP address.
arp_discover() uses ARP protocol to send broadcast messages, then it waits for replies. It may introduce up to several seconds delay to client code. If the function was called in a running task context, it will put the calling task to sleep. The function shall not be called in ISR context. If ISR code absolutely must send network packets, it should use direct Ethernet interface (see NET-1, NET-2 and NET-3) or ensure that the target Ethernet address has resolution to Ethernet address by calling find_arp_entry().

Additionally the ARP module provides two callback functions to the lower-level Ethernet interface and IP interface.

void
parse_arp(struct net_if *net_if, char *pdata);
This function is called by Ethernet packet parser when it finds that the packet is destined to ARP protocol. Depending on the context of the packet, the function either updates local ARP tables (ARP source IP address and Ethernet address present in the packet) or sends back ARP response (ARP packet contains request for a local IP address).
void
update_arp_tbl(unsigned char *remote_ip_addr, struct eth_frame_hdr *frame_hdr);
This function is called for every IP packet received. If the correspondence between sending IP and Ethernet addresses doesn't exist in local ARP tables, the ARP tables are updated.
ARP module also provides API function to advertise itself using gratuitous ARP request to a specific network interface:
void
send_grat_arp(struct net_if *net_if);
ARP module depends on Ethernet module, Task Manager, Timers and Memory Manager.
ARP module at any time keeps at least one entry in local ARP tables, which correlates IP broadcast address to Ethernet broadcast address. Therefore, it is always safe to send broadcast messages without a risk to wait a number of seconds for ARP target address resolution.
NET-5:

Network Support Library provides IPv4 implementation. IP protocol provides encapsulation for higher-level TCP, UDP and ICMP protocols and encapsulates itself into lower-level Ethernet frames.
IP module implements the following API for client code for sending packets:

struct net_if
*get_net_interface(unsigned char *ip_addr);
The function get_net_interface is used to retrieve a network interface used to send data to requested IP address. Network interface may correspond to local IP address on the same network with the ip_addr or with default or configured gateway.

void
prep_ip_hdr(struct ip_hdr *ip_hdr, word packet_len, byte protocol, const dword *src_ip, const dword *dest_ip);
The function prep_ip_hdr is used to prepare IP header. ip_hdr points to IP header area, the rest of parameters are placed in right fields of IP header; then IP header checksum is calculated and placed in IP header.

int
ip_send_packet(struct net_if *net_if, unsigned char *ip_addr, unsigned size);
The function ip_send_packet is used to send packets to Ethernet layer. It accepts network interface in net_if parameter, target IP address in ip_addr and size including IP header. net_if parameter may be NULL, in which case the function will call retrieve network interface correct for the target IP address. The function retrieves Ethernet address for target IP (or gateway) from ARP module; if that is not available it will invoke arp_discover() in order to realize the target Ethernet address. ip_send_packet can be called safely in task context; if called in system or interrupt context the caller must ensure that target Ethernet address exists in local ARP tables by queried find_arp_entry() prior to calling ip_send_packet.
The general model of sending network packets provided by the IP module to higher protocol layers is the following:

· The client calls get_net_interface in order to retrieve network interface suitable for sending to target IP address.
· The client calls eth_get_send_packet in order to obtain Ethernet payload data area for the next packet and lock network interface.

· The client calls prep_ip_hdr in order to prepare IP header
· The client fills IP payload with its data

· The client calls ip_send_packet in order to submit the packet.

NOTE: the client may choose to submit a packet directly to Ethernet interface in the last step by calling eth_send_packet instead of ip_send_packet.

The IP module provides two system entry points.
void
parse_ip(struct net_if *net_if, char *pdata);

The function parse_ip is called by Ethernet parsing module's eth_parse_packet function when it discovers that the packet is designated to IP protocol.

void
init_ip(void);

The function init_ip is called by system initialization code in order to allow IP module initialize its structures and state. Please refer to BAS-1.

TBD
interface for raw (IP) sockets to be provided by IP module.

NET-6:

Network Support Library provides TCP implementation. TCP module offers reliable connection for bi-directional data transfer. It implements three-way connection handshake for client and server sides, simultaneous connections, independent two-way shutdown, sliding window acknowledgement and TCP retransmission timers. Please refer to TCP specification for details.
TCP module will reset connection (by sending a packet with RST flag set to peer) when a packet with wrong properties for the current connection's state is received, including segments with acknowledgement numbers more than window size above the last acknowledged segment.

TCP module is closely related to Sockets module; all connection state, peer addresses information etc. is kept in sockets structures and may be accessed (in most cases) by Sockets API.

TCP module provides interface to Sockets module (connect, accept connections, shutdown and reset connections, send and receive data) and to system (TCP parsing and initialization entry points).
The following API functions are provided to the client (Sockets module):
int
tcp_connect(struct socket *psock, const struct sockaddr_in *address);
Connects socket represented by psock to address. The socket must be confirming with requirements placed on connecting sockets by Sockets API (must be of type SOCK_STREAM, non-listening and not connected, etc.). Please refer to Sockets API specification for details.
The function tcp_connect sends TCP SYN packet to peer and puts calling task to sleep on select() multiplexer. The task will wake up upon successful completion of TCP three-way connection handshake (or double two-way handshake for simultaneous connections) or with timeout error.

unsigned tcp_send(struct socket *psock, const void *message, size_t length, unsigned flags);
The function sends TCP data via the socket psock. The socket must conform to requirements placed on sockets of type SOCK_STREAM for sending data by Sockets API.
TCP module provides client with select multiplexer events. The following Sockets API calls receive select events: send(), sendto(), recv(), recvfrom(), connect(), accept(), select().

TCP module API functions shall be called only in running task context.

TCP module provides the following entry points to other system components:

void
parse_tcp(struct net_if *net_if, char *pdata, struct ip_hdr *remote_ip_hdr);

The parse_tcp function parses TCP packet and performs necessary actions according to the designated socket's state and correctness of the packet. It is intended to be called by the IP module when the designated protocol in IP header is TCP. This function is responsible for delivery of read events to clients that wait on select multiplexer which includes TCP sockets and write events to clients that wait on select for sockets to complete connection.
There is currently no TCP-specific initialization entry point to be called by system init code.

TCP module depends on IP, ARP and Ethernet modules, Memory Manager, Task Manager and Timers.
NET-7:

Network Support Library provides UDP implementation. UDP module offers unreliable datagram-based rata transfers (sends or receives). Please refer to UDP specification for details.
UDP module provides interface to Sockets module (send and receive data) and to system (UDP parsing and initialization entry points). Broadcast packets are supported for both send and receive. Multicast transfers are currently not supported.
The following API functions are provided to the client:

unsigned udp_send(struct socket *psock, const void *message, size_t length, const struct sockaddr_in *dest_addr, unsigned flags);
unsigned udp_send_to_netif(struct net_if *net_if, const void *message, size_t length, const struct sockaddr_in *src_addr, const struct sockaddr_in *dest_addr, unsigned flags);
The difference between two sending functions is that udp_send is used by Sockets support library and accepts pointer to socket structure psock as a parameter, and udp_send_to_netif is used to send a packet directly to network interface net_if when the caller is not Sockets library (it may be a system protocol which uses UDP for transport, such as DHCP).

udp_send must be called only in running task context, because it uses select multiplexing. udp_send_to_netif may be used in any context if it was confirmed that the target address is found in local ARP tables or if the target address is broadcast. See NET-4 for details.
UDP module provides client with select multiplexer events. The following Sockets API calls receive select events: send(), sendto(), recv(), recvfrom().

UDP module provides the following entry points to other system components:

void
parse_udp(struct net_if *net_if, char *pdata, struct ip_hdr *remote_ip_hdr);

The parse_udp function parses UDP packet and performs necessary actions according to the designated socket's state. This function is responsible for delivery of read events to clients that wait on select multiplexer which includes UDP sockets.
There is currently no UDP-specific initialization entry point to be called by system init code.

UDP module depends on IP, ARP and Ethernet modules and Task Manager.
NET-8:

Network Support Library provides Berkeley Sockets API implementation. The following Sockets API functions are implemented: socket(), close(), bind(), accept(), connect(), getpeername(), getsockname(), getsockopt(), listen(), recv(), recvfrom(), send(), sendto(), setsockopt(), shutdown(), read(), write(), fcntl(), select(). Please refer to POSIX.1-2001 specification for detailed description of the functions prototypes and semantics.
Sockets module depends on TCP and UDP modules, Memory Manager, Task Manager and Standard C Support Library.

TBD
interface for raw IP sockets (will add dependency of Sockets module on IP module).

NET-9:

Network Support Library provides the following IP address support API functions: inet_aton(), inet_addr() and inet_ntoa().Please refer to POSIX.1-2001 specification for detailed description of the functions prototypes and semantics.

NET-10:

Network Support Library provides minimal ICMP implementation in order to allow determination of network connection status of the SeptemberOS host by remote hosts with popular ping utility and to allow determination of network connection status of remote hosts by SeptemberOS application software via ping means.

ICMP module implements ICMP Echo Request and ICMP Echo Response messages formatting, transfer and parsing.

ICMP provides the following entry points to other system modules:

void
parse_icmp(struct net_if *net_if, char *pdata, struct ip_hdr *remote_ip_hdr);

The function parse_icmp is intended to be called by IP protocol parser when the designated protocol in IP header is ICMP. If Echo Request is received, response will be sent immediately.

ICMP module depends on IP module.
TBD
define interface to ping via ICMP remote targets by local application software. It needs not be ICMP module interface, may be implemented using raw IP sockets.

NET-11:

The Network Support Library provides DHCP client implementation for dynamically configuring local IP address for the SeptemberOS host. DHCP uses UDP protocol in order to communicate with DHCP server (mostly via broadcast packets). Please refer to DHCP specification for details.
DHCP module provides the following interface for client code:
int
dhcp_discover(struct net_if *net_if);
The function dhcp_discover initiates dynamic IP configuration of the specified interface. The configuration proceeds through DHCP states as responses arrive; necessary requests are determined from responses and are sent instantly in DHCP parsing context.

DHCP module provides the following interface to other system modules for parsing DHCP packets:

int
parse_dhcp_client(struct net_if *net_if, char *pdata, size_t size);
int
parse_dhcp_server(struct net_if *net_if, char *pdata, size_t size);
The functions parse_dhcp_client and parse_dhcp_server are called by the UDP module when no socket consumed a packet and the designated port in UDP header is DHCP client port or DHCP server port, respectively.
DHCP module is dependent on UDP and IP modules.
3.7 File Systems Support Interface
3.7.1 Description and Priority

File Systems Support Interface is provided for accessing file systems. Implementations will supply appropriate requests to access real file systems data structures on storage media or implement pseudo-filesystems.
File Systems Support Interface depends on Disks numbering interface, which includes disk number and starting sector number. Disk and Starting Sector numbers are used by File Systems Support Interface to logically identify a file system; they need not necessarily correspond to physical disk storage media.

3.7.2 Stimulus/Response Sequences

File Systems Support Interface logically glues generic I/O layer to filesystems specific modules. In current implementation it connects POSIX I/O API to filesystems; it is invoked by POSIX I/O API function calls.
3.7.3 Functional Requirements

FLS-1:

The File Systems Support Interface is accessible via the following interface structure.
struct fs

{

int
disk_num;

// Disk number

int
part_num;

// Partition number -- meanwhile unused --

off_t
start_offs;

// Starting offset of its partition

char
*mount_point;

// 'root' name for a FS, may be any string. (!) It's user's responsibility to assign distinct names

void
*fs_priv;

// Private structure specific to FS which must be instantiated

int
fs_type;

// ext2, fat, ...

off_t
dir_pos;

// For directory services
int
(*mount)(struct fs *this, const char *mount_point, int disk_num, unsigned start_sect);

int
(*unmount)(struct fs *this);
// unmount() entry point

int
(*file_open)(struct fs *this, const char *pathname, int flags, void **fs_entry);

// FS's generic open() procedure

int
(*file_creat)(struct fs *this, const char *pathname, mode_t mode, void **fs_entry);

// FS's generic creat() procedure

ssize_t
(*file_read)(struct fs *this, void *fs_entry, void *buf, off_t offs, size_t count);

// FS's generic read() procedure

ssize_t
(*file_write)(struct fs *this, void *fs_entry, const void *buf, off_t offs, size_t count);
// FS's generic write() procedure

int
(*file_close)(struct fs *this, void *fs_entry);
// FS's generic close() procedure

int
(*file_unlink)(struct fs *this, char *path);
// FS's generic unlink() procedure

int
(*file_rename)(struct fs *this, char *src_path, char *dest_path);

// FS's generic rename() procedure

ssize_t
(*get_file_size)(struct fs *this, void *fs_entry);

unsigned long (*get_file_attrib)(struct fs *this, void *fs_entry);

struct dirent
*(*read_dir)(struct fs *this, void *fs_entry, off_t offs);

size_t
(*seek_dir)(struct fs *this, void *fs_entry, off_t offs);

// Returns correct offset for given offs - to be used in further read_dir().

int
(*stat)(struct fs *this, const char *path, struct stat *buf);
// stat()

int
(*fstat)(struct fs *this, void *fs_entry, struct stat *buf);
// fstat()

void
(*sync)(struct fs *this);
// Just sync()

};

FLS-2:

disk_num and start_offs are used to identify filesystem's data structures on the media. For pseudo-filesystems the fields may be ignored.
Fields part_num, fs_priv, fs_type and dir_pos are reserved for internal use by the file system implementation. fs_type is set by FS implementation's mount function and may be later tested by the FS management code in order to verify that the structure corresponds to a valid filesystem.
FLS-3:

mount entry point ignores all other fields of struct fs. It fills other structure's fields, including fs_type, mount_point and all API function pointers.

mount_point is chosen by FS management code. It may be any scheme arbitraty chosen; filesystem must be just supplied mount point for mount API call, which it will store in FS structure for the management code's reference. FS implementations refer file names related to their root directory in UNIX naming conventions ("/" is FS'es root directory, directory names are separated with "/").
FLS-4:

All FS API entry points accept FS instance structure as the first parameters. File system entities are referenced via private structure fs_entry, which is returned in output parameter by file_open() method. This pointer as void* serves through all other file-related API calls as an analog to POSIX file descriptor or standard C library pointer to FILE.
FLS-5:
API functions provide the following functionality:

mount() – mounts file system under given name and fills the file system structure.

unmount() – unmounts file system and frees all internal structures. The fs structure shouldn't be used as reference to a valid filesystem any more

file_open() – opens a file entity; pathname and flags parameters have the same meaning as in POSIX open(). fs_entry is filled with a void pointer which is used to identify the file entity afterwards, until closed
file_read() – reads from file entity. buf points to destination buffer, offs is an offset from beginning of file (file pointer), count is bytes count to read
file_read() – writes to file entity. buf points to source buffer, offs is an offset from beginning of file (file pointer), count is bytes count to read. File entity on filesystem may grow as result of file_read() request
file_close() – closes file system entity by releasing all associated structures and stamping last modification time if necessary. This make fs_entry no longer valid to reference a file entity object
file_unlink unlinks the file entity object from a filesystem. path is relative to the filesystem's root directory

file_rename changes name of file entity object, possibly moving it from one directory to another. src_path and dest_path are relative to the filesystem's root directory

get_file_size returns up-to-date size of a file entity as known in the filesystem

get_file_attrib returns up-to-date attributes of a file entity as known in the filesystem
read_dir reads directory record from filesystem at given offset. fs_entry must refer to a directory. Returns directory record read or NULL upon error. NOTE: subsequent calls to read_dir may return the same pointer but filled with different records. The caller should not assume that content of a directory record returned by one call to read_dir will remain after the next call
seek_dir seeks directory referred to by fs_entry to offs. Returns correct offset to be used by subsequent call to read_dir
stat, fstat, sync are counterparts for POSIX API calls stat(), fstat() and sync()
3.8 Standard C Support Library

3.8.1 Description and Priority

Standard C Support Library provides convenience of using many of familiar standard C functions specified in the ISO C Standard (9899:1999). This chapter doesn't provide detailed descriptions of those functions, but mentions differences and provides list of supported functions.
In general, most of standard C library is supported except for math functions.

3.8.2 Stimulus/Response Sequences

Standard C Support Library API functions are called by application and SeptemberOS system code.

3.8.3 Functional Requirements

LBC-1:

Standard C Support Library provides the following functions: isspace(), isascii(), isdigit(), toupper(), tolower(), sprint(), vsprintf(), sscanf(), vsscanf(), memcpy(), memmove(), memset(), strcpy(), strncpy(), strcat(), strncat(), memcmp(), strcmp(), strcasecmp(), strcoll(), strncmp(), strxfrm(), memchr(), strchr(), strrchr(), strcspn(), strpbrk(), strspn(), strstr(), strtok(), strlen(), strerror(), malloc(), calloc(), free(), realloc(), random(), time(), localtime(), asctime(), ctime(), gmtime(), mktime(), sleep(), rename(), fopen(), freopen(), fclose(), fread(), fwrite(), fprintf(), printf(), vfprintf(), fscanf(), scanf(), vfscanf(), fgetc(), fgets(), getc(), ungetc(), gets(), fputs(), fputc(), putc(), setvbuf(), setbuf(), fflush(), feof(), ferror(), clearer(), fseek(), ftell(), rewind(), fgetpos(), fsetpos(), system()
LBC-2:

Standard C Support Library provides the following standard C global data: errno variable of type int and stdin, stdout and stderr stream pointers of type FILE*.
LIBC-3:

Standard C Support Library provides initialization entry point for system start-up to call:

void
init_libc(void);
C linrary functions may be called only after init_libc() has been called.
TBD
it is recognized that math functions don't provide benefit for embedded systems in many cases. Often SeptemberOS software will run on CPU/MCU without FP support in hardware, and often without any need in math library. While it is justified to save on footprint on such systems, it should be examined in which cases and on which systems it is beneficial to include math support.
3.9 POSIX Support Library

3.9.1 Description and Priority

POSIX Support Library provides convenience of using many of familiar standard POSIX functions specified in the POSIX Standard (POSIX.1-2001). This chapter doesn't provide detailed descriptions of those functions, but mentions differences and provides list of supported functions.

3.9.2 Stimulus/Response Sequences

POSIX Support Library API functions are called by application code.
3.9.3 Functional Requirements

PSX-1:

POSIX Support Library provides the following I/O functions: open(), creat(), read(), write(), lseek(), fcntl(), close(), sync(), fsync(), fdatasync(), unlink(), dup(), dup2(), link(), mknod(), stat(), fstat(), lstat(), select(), opendir(), closedir(), readdir(), rewinddir(), seekdir(), telldir(), pipe(). Sockets API functions, which are also part of POSIX.1-2001 standard are provided by the Network Support Library.
PSX-2:

POSIX Support Library provides the following pthreads emulation API functions: pthread_create(), pthread_exit(), pthread_join(), pthread_detach(), pthread_kill(), pthread_attr_init(), pthread_attr_destroy(), pthread_equal(), pthread_attr_getdetachstate(), pthread_attr_setdetachstate(), pthread_attr_getschedparam, pthread_attr_setschedparam(), pthread_attr_getschedpolicy(), pthread_attr_setschedpolicy(), pthread_attr_getinheritsched(), pthread_attr_setinheritsched(), pthread_attr_getscope(), pthead_attr_setscope(), pthread_attr_getstack(), pthread_attr_setstack(), pthread_attr_getstacksize(), pthread_attr_setstacksize(), pthread_attr_getstackaddr(), pthread_attr_setstackaddr(), pthread_setschedprio().

PSX-3:

POSIX support library provides the following process emulation API functions: execve(), execvp(), execv(), execle(), execlp(), exit(), atexit(), wait(), waitpid(), signal(), kill(), getpid(), getppid(), raise().
NOTE: exit(), atexit() and signal() are also standardized by ISO C Standard Library.
NOTE: fork() and vfork()functions are not supported because their semantics are not compatible with SeptemberOS memory architecrure.

PSX-4:

POSIX support library supports the following types of file descriptors: regular files, devices, sockets, pipes, FIFOs. Devices are configured to have symbolic name corresponding to device ID and sub-device ID. There are no rules or limitations on what structure the names should have; the current implementation uses familiar "/dev/xxx" naming convention. There are no device nodes or other file system objects associated to device names.
PSX-5:

POSIX support library provides the following initialization entry point for system init code:

void
init_io(void);
3.10 Architecture Support Library

3.10.1 Description and Priority

Architecture Support Library provides architecture and machine-dependent initializations, interrupt entry points and task switching back-ends.

New architecture or machine ports must provide the interface specified in this chapter for the platform that they support.

3.10.2 Stimulus/Response Sequences

Architecture Support Library is called internally by system initialization code, by CPU via hardware reporting and by system components such as the Task Manager in order to perform system-dependent task switching part.

3.10.3 Functional Requirements

ARC-1:

Architecture Support Library provides the following system API functions:

void
arch_eoi(int int_no);

Performs architecture and machine-specific eond-of-interrupt issue to interrupt controller

void
switch_to(TASK_Q *pq);
Performs registers and CPU state context loading from pq.

NOTE: intended for exclusive use by Task Manager during task switching

void
switch_task(TASK_Q *pq);

Performs task switch (saves register and CPU state context in running tasks's structure, then performs switch_to(pq).

NOTE: intended for exclusive use by Task Manager during task switching

void
init_new_task_struct(TASK_Q *pq, TASK_ENTRY task_entry, dword param);

Initializes system-specific fields in task structure.

NOTE: intended for exclusive use by Task Manager during task creation

Synchronization functions specified in TSK-8 are provided by Architecture Support Library (platform-specific part of Task Manager).

ARC-2:

Architecture Support Library provides the following initialization entry points to be used by system init code.

void
init_platform(void);
Performs general platform-specific initialization

void
plat_init_timers(void);
Performs platform-specific timers initialization

void
plat_init_sys_time(void);

Performs platform-specific time initialization (may be hardware real-time clock if available)

ARC-3:

Architecture Support Library provides the following entry points for halting and rebooting system:

void
plat_halt(void);

Halts the system
void
plat_reboot(void);

Reboots the system
4. External Interface Requirements

4.1 User Interfaces

As software components set SeptemberOS doesn't directly provide user interface. Building is done with GNU tools and may be incorporated in many GUI build and debug environments.
As target system core SeptemberOS also doesn't mandatory provide user interface. Where applicable, terminal-based user interface is supported via POSIX streams stdin, stdout and stderr. On all officially supported platforms they may be targeted to NULL-modem connected to PC or another desktop host. On x86 PC target also keyboard+screen terminal may be targeted.
Sample applications are provided for telnet and web (HTTP) user interfaces (servers).
4.2 Hardware Interfaces

SeptemberOS runs directly on hardware and interfaced hardware directly. All software (including application) runs in kernel mode, with full access to hardware facilities. Memory translation is not used, and all addresses accessible by CPU by physical addressing are accessible to SeptemberOS components and the application.

Supported hardware platforms come with at least support for CPU state saving and restoring (task switching), at least one UART interface, programmable timer and interrupt controller. Where applicable, Ethernet NIC drivers are provided. Adding additional platforms support and extending and expanding hardware support for already supported platforms is an ongoing process in SeptemberOS development and evolution.
4.3 Software Interfaces

SeptemberOS doesn't use interfaces provided by other software. Interfaces provided by the OS itself are specified in chapter ‎3 - System Features.
4.4 Communications Interfaces

SeptemberOS provides the following hardware communications interfaces:

· Peripheral buses (ISA, PCI, USB, ATA, IIC)

· Communication buses (Ethernet)

· Serial communications (UART)

The following software communications interfaces are provided:

· TCP/IP protocol suite (ARP, IP, TCP, UDP, ICMP, DHCP) with Berkeley Sockets API

· Some application-level protocols are provided as sample applications (telnet, HTTP)

· Local inter-task communications (files, pipes, FIFOs, message queues, signals, semaphores, mutexes, events)
5. Other Nonfunctional Requirements

5.1 Performance Requirements

SeptemberOS is designed to achieve as good performance as possible depending on architecture and machine's limitations. Time measurements for task switching, interrupt reporting overhead, system start-up and inherent interrupt and preemption disabling periods will be provided per supported platform.
5.2 Safety Requirements

Being a set of building software block, SeptemberOS doesn't make any safety provisions or apply any safety-related requirements. Interfaces provided by SeptemberOS are intended for complete control over hardware and provide complete access and control to the entire system to the application developer. The latter assumes all responsibility for safety-related requirements definitions and for withstanding them.
5.3 Security Requirements

N/A (the same as for Safety Requirements)
5.4 Software Quality Attributes

Being a software components set product, SeptemberOS puts a special emphasis on software quality attributes:
· adaptability, portability, reliability and robustness – SeptemberOS is easily adopted (ported) to different architectures and machines (boards). Special porting guides are available. Complete source code is helpful in porting effort

· availability – everything that is necessary to start building SeptemberOS applications is available in the distribution

· correctness – constant functional and regression testing is applied to SeptemberOS to ensure that correctness fits the product's intended level and is constantly improving

· flexibility – being separated to components as building blocks and with replacement and changing guidelines provided SeptemberOS is one of the most flexible embedded OS available

· interoperability – SeptemberOS is based on industry standard APIs in order to maintain high level of interoperability with existing systems and software. Most portable standard C, POSIX and networking programs will be trivially transferrable to SeptemberOS applications

· maintainability – SeptemberOS is built with industry standard GNU build tools and is easily maintained using one of the standard version control systems

· testability – SeptemberOS is supplied with sample applications designed in such a way that they provide significant test case each. Those tests are easily reproducible on the client side and are always available for verification. Also, SeptemberOS includes significant amount of conditionally compiled diagnostic code, which may be turned on in order to absorb logs and sent to the OS vendor for examination

· usability – SeptemberOS provides several components of industry standard concepts and APIs implementations; as a result, the developer may need only to know those standard interfaces and understand general concepts behind SeptemberOS design in order to use the product. There is no need for dedicated study of proprietary interfaces, no need for study of OS specific concepts and no need for bending application's design to non-flexible OS requirements.
6. Other Requirements

N/A

Appendix A: Glossary

TBD

Appendix B: Issues List

To Be Provided
Architecture Support Library (architecture and machine support)

Basic Services

Memory Manager

Task Manager

Device manager

Timers

Device Drivers

(Device Drivers are provided as part of machine port - BSP and additional drivers may be developer; however drivers are not considered integral part of SeptemberOS)

Filesystems Support Library

Network Support Library

POSIX Support Library

Standard C Support Library

Application

(Sample Applications)

